Какие риски в условиях нынешнего кризиса наиболее значимы для Вашей организации?
Риск падения спроса.
Ценовые риски.
Риск ликвидности.
Кредитный риск.
Риск потери деловой репутации.
 Главная >  Технологии > Статистические методы

Восстановление функции плотности

Где отсутствует точное знание, там действуют догадки,
а из десяти догадок девять - ошибки
М. Горький


От неопределенности к вероятности

Основной проблемой в достижении успеха при управлении инвестициями является будущая неопределенность фондового рынка. Невозможно со 100%-точностью прогнозировать будущее, будь то значение того или иного экономического показателя, цена финансового актива или поведение инвесторов. Поэтому любая оценка будущих состояний рынка носит вероятностный характер - можно лишь сказать, что цена актива или значение фондового индекса окажется в некотором ценовом интервале с заданной вероятностью. Вероятностный характер мира биржевой торговли требует использования в качестве "кубиков", на основе которых строятся технологии финансового инжиниринга, серьезных статистических методов. Ими компания "Франклин&Грант" владеет в полном объеме. Один из таких "кубиков" - нетривиальный, сложный и трудоемкий - метод восстановления плотности вероятности значений финансовых величин (цен, доходности, объемов торгов и т.д.).

От предположений к реальности

Многие технологии финансового инжиниринга, используемые для управления риском и доходностью инвестиций, используют предположение о нормальном распределении вероятности цен акций, доходности, волатильности или других показателей. Симметричность распределения, небольшая вероятность существенных отклонений - все это, конечно, упрощает анализ, но может привести к выводам, которые лишь в малой степени отражают действительность. Ведь далеко не все рыночные показатели такого, например, финансового инструмента, как акции подчиняются закону нормального распределения. Более того, в условиях стабильного, "нормального" рынка распределение доходности актива может быть нормальным. На нестабильном рынке, т.е. на другом временном горизонте - будет распределением с острой вершиной и "толстыми хвостами" в области высоких доходов и высоких потерь.

Метод восстановления функции плотности распределения позволяет вместо необоснованных предположений о нормальности распределения получить картину, соответствующую реальному положению дел. В результате - инвестор принимает решения на основе гораздо более точной оценки рисков.

Убедиться в этом можно на конкретном примере, демонстрирующем преимущества метода "Франклин&Грант" при оценке относительных потерь стоимости портфеля, который был составлен в феврале 2001 года из акций пяти компаний.

Плотность вероятности для относительных изменений стоимости портфеля

Относительное изменение стоимости портфеля акций и Value at Risk

На вышеприведенном рисунке приведены "левый хвост" реального распределения относительных изменений стоимости портфеля (красная линия) и "левые хвосты" распределений, построенных по четырем разным моделям.
Как видно, GARCH-модель, используемая в RiskMetrics, серьезно недооценивает потери, составляющие 10-30% от стоимости портфеля. С другой стороны, модель Парето, наоборот, очень сильно переоценивает риск снижения стоимости портфеля - это приводит к тому, что объем резервного капитала намного превышает требуемые значения.
Нормальное распределение и распределение "Франклин&Грант", на первый взгляд, не имеют принципиальных отличий. Однако в области больших потерь "Франклин&Грант" гораздо точнее описывает реально наблюдаемые данные. Более наглядно это показано на рисунке, приведенном ниже.

Модели, используемые для описания ряда относительных изменений стоимости портфеля

Эффективность оценки финансовых рисков:  Value at Risk (VaR)

Координаты точки на плоскости рисунка показывают соответствие модели и реальности. В идеале, точки должны попасть на биссектрису - это означало бы равенство координат, то есть полное соответствие модели наблюдаемому ряду. На данном рисунке биссектриса показана тонкой красной линией.
Если точка лежит выше этой линии, это говорит о том, что выбранная теоретическая модель недооценивает риски, наблюдаемые в реальной жизни. В частности, вместо потерь, составляющих 15% от стоимости портфеля, расчет согласно GARCH-модели показал потери на уровне 5%. Такое положение вещей часто наблюдается на концах отрезка возможных значений финансовых величин и называется "проблемой тяжелых хвостов" - в реальности большие изменения цен происходят чаще, чем это должно случаться согласно нормальному распределению.
Если же точка лежит ниже биссектрисы, это значит, что риски переоценены. Так, для тех же 15%-потерь модель Парето рассчитала снижение стоимости более чем на 20%.
Из двух оставшихся методов наиболее точное приближение к реальности в области больших потерь дает распределение, восстановленное по методу "Франклин&Грант", - первые точки синей кривой практически идеально совпадают с красной линией, т.е. с наблюдаемыми данными.

Результат

Использование результатов по восстановлению функции плотности распределения финансовых показателей в технологиях финансового инжиниринга при управлении риском и доходностью существенно повышает эффективность управления, обеспечивает стабильность.




    Начало

e-mail : info@franklin-grant.ru
Задать вопрос OnLine

Site design by MIRRON.com (C) 2002 www.mirron.com  
Rambler's Top100 Рейтинг@Mail.ru
«Франклин&Грант» 2002-2016 All rights reserved (C) 2002-2016 Franklin Grant

Любое использование материалов Интернет ресурса www.franklin-grant.ru допускается только с разрешения
правообладателя - ООО «Франклин&Грант. Риск Консалтинг».


Замечания и пожелания присылайте по адресу
Все права защищены© 2002 – 2016 ООО «Франклин&Грант. Риск Консалтинг»

 

EduNow.su Образовательный портал